4 VOLUME CHANGE ASSOCIATED WITH NONCUBIC...

their direct-space calculations.

The method of calculating the formation volumes
in the direct-space approach differs from that out-
lined in the present paper, so that one cannot, in
this case, construe the differences in the activa-
tion-volume results as being due to the shortcom-
ings of the direct-space technique pointed out
earlier.** However, Hardy® has pointed out that
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current elasticity-theory methods of obtaining the
volume changes induced by a defect are generally
unreliable. The discrepancies in the activation
volume found here, along with the corresponding
differences in migration energies found in Ref. 6,
cast a certain amount of doubt on the parameters
of the carbon-iron interaction developed in Ref. 8
by direct-space technique.
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Reformulation of the lattice thermal conductivity of solids has been given, using the fact that
the three-phonon umklapp processes can be divided into different classes depending on the re-
ciprocal-lattice vectors of the crystal concerned, and that they tend towards displaced distribu-
tion functions characteristic of their own. The expression obtained differs from that of Callaway
by terms which are expected to be of minor importance in real systems.

I. INTRODUCTION

In the past, most of the calculations of the lattice
thermal conductivity of crystals have been made by
using the Boltzmann transport equation for pho-
nons.!”3 In its linearized form, this equation can
be written as

~ =, dN (aN)
VeVT —= =\7 ) (1)
dT at scatt

where N=N(§j) is the phonon occupation number
corresponding to state j in the crystal under study
and V=V(qj) is the phonon group velocity, § and j
being the phonon wave vector in the reduced-zone
scheme and the polarization index, respectively.
The term VT is the steady-state thermal gradient.
To calculate the lattice thermal conductivity, one
has to solve Eq. (1) for N. Usually, it is assumed
that N differs only slightly from the corresponding
Planck distribution N° characteristic of the tem-
perature of the system. This assumption can be
taken to be valid at least for vanishingly small ther-
mal gradient. One can therefore replace N by N°

on the left-hand side of Eq. (1), obtaining

dN «x e*
d—T_?(e"-l) s (2)

where x=wh/kT, w=w({7j) being the phonon fre-
quency and % being the Boltzmann constant.

The term (8N/8¢)4..¢¢ On the right-hand side of
Eq. (1) describes the rate of increase of N as a re-
sult of the various scattering processes taking place
in the crystal. If the scattering events do not in-
terfere, then it is possible to write this term equal
to the sum of the individual contributions (3N/8¢);
of the different types of scattering processes, where
i specifies the type of process. (By interference
we mean that there exists no scattering event which
belongs to two different types of scattering pro-
cesses.) Since (0N/d¢t); has a very complicated
form even for highly simplified systems, the relax-
ation-time approach is often used. The relaxation
time gives a statistical description of how the scat-
tering processes of a given type tend to modify the
phonon occupation number. Formally, the relaxa-
tion time 7; is defined by
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(),
at i— T

where N, is a function towards which the i-type
processes tend.

The structure of N; is decided by the conserva-
tion laws the scattering processes obey. For ex-
ample, since scattering by point defects, etc., does
not place any conservation condition on the phonon
wave vector, these processes are expected to tend
towards the Planckdistribution. Recently, the pres-
ent authors have shown in a paper4 (hereafter re-
ferred to as I) that the three-phonon umklapp pro-
cesses can be divided into different classes charac-
terized by the reciprocal-lattice vectors of the
crystal. The three-phonon umklapp processes
which involve the reciprocal-lattice vector g tend
toward N(g), given by

={exp[wh/kT+X(§)- (§-8)]- 1}, @)

X(g) being a constant vector to be determined by the
applied thermal gradient. These processes will be
called u(§) processes. In I, it has been established
that since none of the three-phonon scattering
events corresponds to two different reciprocal-lat-
tice vectors, such a classification is always possi-
ble. In the above type of description, the normal
processes are those for which g equals a null vec-
tor. In the following, we calculate the lattice ther-
mal conductivity when the contribution to (ON/8¢),.4¢+
of different u(g) processes are separately consid-
ered.

II. FORMULATION

Let us define 7(g) to be the phonon relaxation
time corresponding to the u(g) processes, so that
the contribution (3N/8¢); to (8N/8¢),.4¢ Of these pro-
cesses can be given by

(), 2

7(§)
[7(®) is, of course, a function of the phonon state. ]
Accordingly, Eq. (1) can be written as

X e* N0 N N(g
T (e-1)% Ty Z; r(g)

where the first term on the right-hand side takes ac-
count of the contributions of all those processes which
tend towards the Planck distribution. (We include
in this class the scattering by all types of defects
and by the crystal boundary.) The contribution of
each of these processes to the right-hand side of
Eq. (6) is given by (N°- N) divided by the corre-
sponding relaxation time. The total contribution of
all these processes is, therefore, given by (N°=N)
divided by 7,, where 7! is defined as the sum of the
individual inverse relaxation times. Here § runs
over all permissible values of the reciprocal-lattice

(5)

-—

VT =

, (8)
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vectors, including the null vector (normal pro-
cesses); remember that since q is confined to the
first Brillouin zone, § takes only a limited number
of values. All the 7’s in Eq. (6) are functions of

qJ.

To zeroth order in the thermal gradient €T, the
constant vector X(g) should vanish. In first-order
approximation, however, X(g) is not necessarily
along vT. Therefore, the constant relating these
two terms should be a tensor a,.(§g), which we de-
fine by the relation

sz(-é) = Z} ass'(g) VTs' ) (7)

where the index s specifies the sth component of a
vector in the coordinate space. We now write

N(E)=N°-X(®)- ( e*/(e*-1)? (8)

Here we have assumed that this approximate expan-
sion for N(g) [retaining the term linear in X (g)]
holds for all phonons.® This may, perhaps, appear
to be not justified, particularly for very small val-
ues of the phonon frequency. Although we can sat-
isfy ourselves by assuming that Eq. (8) holds for
all phonons that contribute significantly to the heat
transport, it would still be desirable to justify this
in a convincing way.

By substituting Eq. (6) in Eq. (5), we can easily
obtain

_Tv _ xe* TX(§) (A-§
=TT (e"—l)z( VT+E x01(g) ) ’

(9)

where
n=N-N°,
=7 20, THE),

and V is assumed to be along §—a unit vector along
4. Using Eq. (6), Eq. (7) can also be written as

XE [és+22 (g5 —gs) A s(g)] VT, (10)

o 7 xw7(g)

Now it is possible to write down an expression
for the heat flux per unit area Q in the crystal:

Q=23 (2m)® [dGnwhv , (1)

where integration over the first Brillouin zone is
implied. [In Eq. (11), we have not written explicit-
ly the dependence of the integrand on j. ]| Equation
(11) can also be written in the component form as

_ k . 2 x%*
Q= ? @ [dqqsv T oI
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XE(QS'+EE (g —gser) agersi(8)

xv‘r(g) > VT (12)

Obviously, the conductivity tensor K, is given by

k - A oA 2 xze"
Koo 3oy f 43000 *1 Gy

+EZ§) -k—%g—)[dqqs(qs =ggrr)

vT xe*
X 5 T ] (13)

It has been shown in I that the «(g) processes
conserve the quantity Y3, (§ - ) just as the three-
phonon normal processes conserve the total wave
vector of the system. We have, therefore, the fol-
lowing condition which determines a(g):

vx = (3N
Ejiqu(q— a—t);ﬁ- (14)

Using Eq. (8) and keeping in mind that N=N%+n,
we can write

N=N(E)=n+ T(——ZZ) s—84) aso(E) VT,..

(15)

Equations (5), (10), and (15) can now be used to re-
duce Eq. (14) to the form

Ass'(é) +E'§ Bss"(.éy E,) Cisus:(é’)=0, (16)
where we have defined
_ - _ TV xe*
(g)—Z!)qu(qs g9 ds @ -1 am
B(“(g”' Equ(qs ga)(qs'_gs)
T e*
@@ @-17 18

B(Z) " Eagglf (QS—gs) (qs'_gs’)

1 e
SRR

B,.(§8)=BR(E§)-BIEE), (20)
where 033 is the Kronecker 6 function. Equations
of the form of Eq. (14), whose number is equal to
nine times the number of the allowed values of the
reciprocal-lattice vector (determined by the lattice
structure of the crystal), can be solved in principle
to obtain the tensor @(g). Substituting the value of
a4 (E) in Eq. (13), we get an expression for the
conductivity-tensor element K

ss’e
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III. DISCUSSION

We have calculated the lattice thermal conductiv-
ity in the tensor form. Equation (13) gives an ex-
pression for the tensor component K,,.. which con-
sists of two types of terms: Let us, for the
time being, name the first term the “normal term”
and the rest “special terms.” It is interesting to
compare the normal term with the thermal-conduc-
tivity expression for a classical (monoatomic) gas,
which in its tensor form can be given by

Koo =64 ;—nj; dv Etot ;L; , (21)
where v is the velocity of the gas atoms, and E is
the corresponding (translational) energy (equal to
Limv?). The term 7 denotes the relaxation time,
which is possibly a function of v, for the random
collision of the atoms with one another. = repre-
sents the number of atoms per unit volume of the
configuration and velocity spaces and can be given
by

n=N (m/2nkT)% % e E/*T (22)

m and N being the mass per atom and the number
density of the atoms in the ordinary space, respec-
tively. It is clearly seen that the normal term in
Eq. (13) is essentially of the same form® as Eq.
(21). [Equation (21) can be easily translated into
an integral over the energy variable.] There are
no terms in Eq. (21) analogous to the special terms
in Eq. (13). This result can be interpreted to mean
that the various scattering processes behave like
random processes so far as the normal term is
concerned. The special terms in Eq. (13), on the
other hand, reflect the characteristic nature of the
processes that they are not, in fact, random, but
take place in accordance with certain conservation
laws.

The above derivation is, in fact, a generalization
of Callaway’s formalism.? Callaway has taken ac-
count of the fact that the three-phonon normal pro-
cesses behave differently from those processes
which destroy the phonon wave vector.*” (He has
included the so-called three-phonon umklapp pro-
cesses in the category of wave-vector destroying
processes.) This distinction automatically and
fruitfully results in an expression for the lattice
thermal conductivity that consists of two terms, one
of which is normal in the same sense as discussed
above. The significance of the other term has been
discussed by him and is well known: This term
signifies the fact that the thermal conductivity be-
comes infinitely large when there are only normal
processes.®!® This result can easily be obtained
in the present case. Consider a system in which
there are no processes other than the normal one,
that is, 7, and 7(g) are infinitely large and 7(0) is



4346 Y. P.
finite. In this case, Eq. (14) is identically satisfied
for all nonzero values of . Consequently, only
those equations of the type of Eq. (16), for which
=g =0, survive. As can be easily seen from Egs.
(17)-(20), in this particular case the constants
A,.(0) are, in general, finite, whereas the con-
stants B,,.(0) become zero, with the result that
ass,(a) rises to infinitely large values, giving in its
turn infinitely large values for the thermal conduc-
tivity through the special terms in Eq. (13).2

Alternatively, one can infer the above result di-
rectly from Eq. (6), which in the presence of only
normal processes reads

x e NO-N
T (e"-1°% 1(3)

This equation permits a solution N(§) of the form
given by Eq. (4) for N, when VT=0, since a distri-
bution N(0) can exist freely!! in the presence of nor-
mal processes. This distribution, being anisotrop-
ic, corresponds to a heat flux. Thus, it is possible
to conceive of a heat flux in the presence of normal
processes when there is no thermal gradient. In
fact, the normal processes can only redistribute
phonons into different phonon states, but cannot de-
stroy the anisotropy in the phonon distribution. Re-
member that the absence of the thermal gradient
does not necessarily mean an isotropic phonon dis-
tribution; it merely implies that the distribution
function has no spatial variation.

In the present case, we start with the concept that
the u(g) processes behave more like the normal
processes, rather than like other processes, in the
sense that they also satisfy a definite type of wave-
vector conditon. In fact, as discussed in I, the
wave-vector condition in the case of u(g) processes
states that the total wave vector measured with
respect to some appropriate origin (decided by the
reciprocal -lattice vector g) in the wave-vector
space is conserved. Like the normal one, these
processes are also expected to lead to certain spe-
cial terms, besides the normal term, in the expres-
sion for the lattice thermal conductivity. The
significance of these special terms is expected to
be more or less similar in nature to what it is in
the case of normal processes. In fact, if one con-
siders a case in which there are no processes other
than the u(§) processes, then one can obtain an in-
finitely large thermal conductivity. This can be
done in the same way as was used in the case of
normal processes. For example, one can use
Eqs. (16)-(20) for this purpose, putting 7, and
7(g’) equal to infinity and 7(g) [ corresponding to
the « () processes in question] finite. Alterna-
tively, it is better to start directly with Eq. (6).

In this particular case, N is determined by an equa-
tion that differs from Eq. (23), having § instead of
0. As has been shown in I, this equation permits

v-9T (23)
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a solution N(g) for N of the form given by Eq. (4)
in the absence of -V.T; a heat flux in the system is
associated with N(g). In fact, it is not possible for
the u(g) processes alone to bring a disturbed phonon
system to an isotropic distribution. Instead, the
system relaxes to a distribution of the form given
by Eq. (4), which can exist freely!! in the presence
of the processes in question. The u(g) processes,
therefore, do not necessarily lead to a thermal re-
sistance when they are the sole scattering pro-
cesses. A situation of this type, however, is pure-
ly hypothetical, since it is impossible to conceive
of a system in which only one given type of umklapp
processes takes place. This is because all types
of three-phonon umklapp processes (including the
normal processes) are due to the same anharmon-
icity in the crystal. If the temperature of the sys-
tem is sufficiently low, then it is possible for only
three-phonon normal processes to be taking place
significantly. However, if the temperature is so
large that a given type of umklapp processes oc-
curs, then there are no reasons for the absence of
other types.

To elaborate on the above point, let us consider
the physical basis of the particular behavior of the
normal processes.® Since these processes conserve
the total wave vector of the phonon system, they
cannot obstruct a constant heat flow which corre-
sponds to a surplus total wave vector in its direc-
tion. Now consider, for example, a hypothetical
case in which there exist only »(g) processes,
where g is perpendicular to the thermal gradient.
Since the corresponding wave-vector condition
states that the total wave vector changes by an
amount equal to § whenever two phonons combine to
give one, or vice versa, they do not destroy the
total wave-vector component in the direction of the
thermal gradient. They cannot, therefore, obstruct
the heat flow. This supplies the justification of the
results we get mathematically.

It is also interesting to consider one more hypo-
thetical system. Consider the simultaneous occur-
rence of the #(g) and u(-§) processes. In this
case, when VT =0, neither N(g) nor N(~§) gives a
solution for N in Eq. (6) [with only 7(&) and 7(-§)
finite], unless both of them happen to be the same,
which is possible if they are such that

X(®)-g=X(-8)E=0;
that is, a distribution of the form
(ehwq—i-vs _ 1)-1

where X is such that X - §=0 can still exist in the
system in the absence of the thermal gradient.

This distribution corresponds to a heat flux perpen-
dicular to §. [This result can also be arrived at

by using Eqs. (16)-(20).] In fact, this result is an
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outcome of the same wave-vector conservation con-
ditions we have been talking about so far. Since
either of the two types of processes considered
above changes the phonon wave vectors in terms of
g, neither of them can destroy the phonon wave-
vector components perpendicular to §. Thus, these
processes are not expected to obstruct a heat flux
in the direction perpendicular to §.

The above result is, in fact, more general. If
there is more than one type of scattering process
taking place in a system such that they all permit
a particular anisotropic distribution as a solution
for N, when VT= 0, then they can be said not to ob-
struct the heat flow corresponding to this distribu-
tion. In general, this is not possible; for example,
when there are u(§) processes corresponding to
three values of g linearly independent of one
another, no such distribution can exist. The si-
multaneous existence of these processes then does
not permit a steady flow of heat in any direction in
the absence of the thermal gradient, that is, they
result in a finite thermal resistance to the heat flow
in any direction. Stated more generally, it is be-
cause of the simultaneous existence of the different
scattering processes that a system has a finite
thermal gradient.

The expression for K. clearly shows that the
anisotropic nature of the lattice thermal conductiv-
ity, if any, is due not only to the possible anisot-
ropy in the phonon spectrum and in the structure
of the relaxation times, but also to the specific lat-
tice structure of the crystal, which manifests itself
through the special terms in Eq. (13). Since ex-
perimental results, in general, do not show any ap-
preciable anisotropy in the lattice thermal conduc-
tivity of most solids, we expect that the contribution
of the special terms in Eq. (13) is in practical cases
far less significant than the normal term. In fact,
the lattice thermal conductivities of a number of
solids have been satisfactorily explained*~!" by the
main term of Callaway’s formalism,? which is the
first (normal) term of Eq. (13). From this, it ap-
pears that it is very likely for the special terms in
Eq. (13) to cancel the contributions of one another,
so that their net contribution is small compared to
that of the main term, at least when 7, is sufficient-
ly small.
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A practical application of the present theory is
not possible at this stage. This is particularly so,
since so far there have not been any calculations of
7(g)—relaxation time corresponding to u(g) pro-
cesses. Also, the practical absence of the anisot-
ropy in the thermal conductivity of solids cannot
be successfully exploited to estimate the contribu-
tions of the special terms. The above calculation
also requires the solution of a large number of
coupled equations to get the components of the ten-
sor & (g). Since we do not have, in general, a
first-hand knowledge of the various relaxation
times, we often express them in terms of adjustable
parameters, and this obviously poses a special dif-
ficulty in solving the aforesaid equations. Symme-
try consideration may, however, reduce the number
of equations to a significantly small value. For ex-
ample, in his formalism, Callaway2 has assumed
X(0) to be along VT, which simply means that
@ 4s-(0) has the form 8., X (constant).

In the present paper, we have attempted to draw
a physical picture of how heat flow takes place in a
lattice system. We have derived an analytic ex-
pression for the thermal conductivity, but we are
not much interested in its quantitative implications.
Our primary objective has been to get an insight
into the way the three-phonon processes affect the
lattice-energy transport, stressing the need to take
into account the conservation conditions obeyed by
the scattering processes. In view of the fact that
the normal term we have named above satisfactorily
explains most of the experimental results, partic-
ularly in semiconductors, we believe that the in-
dividuality of different processes is lost when there
are different types of scattering processes, so that
the contribution of the special terms is perhaps far
less significant than that of the normal term. The
above discussion essentially describes the “physics”
underlying the nature of the present problem.
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The serial sectioning method was used to study self-diffusion in cerium metal.

In the fcc

v phase, D =0.6¢™3¢600/RT c;m? sec=!, and in the bee 6 phase, D=1, 2 x107%g-21500/RT o2 gec-t,
The diffusion parameters in the fcc structure are compatible with a normal vacancy mechanism.
The high diffusivities and low activation energy in the bcc phase are characteristic of diffusion

behavior in anomalous bcc metals.
stressed.

INTRODUCTION

The diffusion behavior of the anomalous bcc met-
als has attracted considerable attention in the last
several years. It is well established! that a num-
ber of bcc metals possess unusual properties with
regard to self-diffusion and impurity diffusion. No
single explanation?* of the anomalous properties
has yet completely been accepted.

B-titanium, 5 -zirconium, ® and y-uranium’ were
originally considered as anomalous bcc metals.
The bce structure of these metals extends over a
temperature range of several hundred degrees.

It was therefore possible to detect a definite curva-
ture of the Arrhenius plots for both, self- and so-
lute diffusion. The activation energies for self-
diffusion in the lower temperature range of the bcc
phase had unusually low values, contrary to the
usually obeyed semiempirical rules. Furthermore,
the extremely low preexponential terms indicated
negative entropies of activation.

More recently it has been shown that also g-haf-
nium, 8 ¢-plutonium, ® and g-praseodymium?® have
some of the characteristic features of the anomalous

Similarities with self-diffusion in bce e-plutonium are

bce metals. The bee structure in this group extends
only over a narrow range of temperatures, thus
precluding the detection of curved Arrhenius plots.
The activation energies, however, have anomalous-
ly low values. The preexponential terms, though
low, are less anomalous than those of g-Zr and
B-Ti.

bee structures were found in seven other rare-earth
metals in addition to praseodymium, either as the
only existing solid allotropic form or as high-tem-
perature structures. Information concerning the
diffusion behavior of these metals is very scarce.
This is due to the unavailability of metals of suf-
ficient purity and to the difficulties involved in
diffusion studies with highly reactive materials.

Self-diffusion in the high-temperature bcc phase
of plutonium has been studied at normal® and at
high pressures up to 12 kbar.!! In contrast to most
metals, the self-diffusion coefficients in plutonium
increase with increasing pressure. This fact was
related to the negative slope of the liquidus in the
P-T diagram of plutonium. 2 In order to explain
the negative volume of activation, a model was
proposed!! according to which the atom in the acti-



